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Abstract
Ligaments and tendons are dense connective tissues that are important in transmitting forces and facilitate joint 
articulation in the musculoskeletal system. Their injury frequency is high especially for those that are functional 
important, like the anterior cruciate ligament (ACL) and medial collateral ligament (MCL) of the knee as well as the 
glenohumeral ligaments and the rotator cuff tendons of the shoulder. Because the healing responses are different in 
these ligaments and tendons after injury, the consequences and treatments are tissue- and site-specific. In this review, 
we will elaborate on the injuries of the knee ligaments as well as using functional tissue engineering (FTE) approaches 
to improve their healing. Specifically, the ACL of knee has limited capability to heal, and results of non-surgical 
management of its midsubstance rupture have been poor. Consequently, surgical reconstruction of the ACL is 
regularly performed to gain knee stability. However, the long-term results are not satisfactory besides the numerous 
complications accompanied with the surgeries. With the rapid development of FTE, there is a renewed interest in 
revisiting ACL healing. Approaches such as using growth factors, stem cells and scaffolds have been widely 
investigated. In this article, the biology of normal and healing ligaments is first reviewed, followed by a discussion on 
the issues related to the treatment of ACL injuries. Afterwards, current promising FTE methods are presented for the 
treatment of ligament injuries, including the use of growth factors, gene delivery, and cell therapy with a particular 
emphasis on the use of ECM bioscaffolds. The challenging areas are listed in the future direction that suggests where 
collection of energy could be placed in order to restore the injured ligaments and tendons structurally and functionally.

Introduction
Ligaments and tendons are important structures that are 
designed to transmit forces and facilitate joint articula-
tion in the musculoskeletal system. As such, these tissues 
are frequently injured during sports and work related 
activities. In the case when the anterior cruciate ligament 
(ACL) and medial collateral ligament (MCL) of the knee 
as well as the glenohumeral ligaments and the rotator cuff 
tendons of the shoulder are torn, the respective joints can 
become functionally disabled while the soft tissue in and 
around the joints including the cartilage, menisci, and 
others can be predisposed to damage. In severe cases, lig-
ament and tendon injuries can bring on the early symp-
toms of osteoarthritis.
The healing responses following injuries to different liga-
ments and the consequences can vary greatly. The ACL of 
knee has limited capability to heal, and the results of non-
surgical management of its midsubstance rupture have 

been poor[1,2]. Consequently, surgical reconstruction of 
the ACL using tissue autografts, such as the bone-patellar 
tendon-bone (BPTB) or hamstrings tendon (HTs), and 
soft tissue allografts is regularly performed to gain knee 
stability. However, there are complications coming with 
these reconstruction surgeries that include the donor site 
morbidity, extensor deficit of the knee, degeneration of 
tissue replacement graft, hamstring muscle weakness, 
bone tunnel enlargement and other side effects[3-12]. In 
spite of significant efforts being made to improve the sur-
gical procedures for ACL reconstruction during the last 
twenty years, many patients still develop osteoarthritis 
early in the long term[13,14].
Extra-articular ligaments such as the MCL of the knee 
have a high propensity for healing without surgical man-
agement[15-20]. Their structural properties based on 
tensile testing of the femur-MCL-tibia complex (FMTC), 
can be restored within weeks, and as a result, patients can 
return to work and sports quickly with functional treat-
ment using splints or braces. Nevertheless, laboratory 
studies has discovered that the mechanical properties, 
histomorphological appearance, and biochemical compo-
sition of these healed MCL remain poor when compared 

* Correspondence: ddecenzo@pitt.edu
1 Musculoskeletal Research Center, Department of Bioengineering, Swanson 
School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
† Contributed equally
Full list of author information is available at the end of the article
© 2010 Hsu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons At-
tribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20492676


Hsu et al. Sports Medicine, Arthroscopy, Rehabilitation, Therapy & Technology
2010, 2:12

Page 2 of 10
to those of the normal MCL[18,21-25]. With the avail-
ability of functional tissue engineering (FTE) and the 
promising use of growth factors, stem cells, and bioscaf-
folds, research work to improve the tissue quality has 
been done, especially by means of good animal models 
such as the rabbit, dog and goat[26]. Much has been 
learnt about the healing process as well as the potential 
for extending the novel methods to the healing of other 
ligaments and tendons including the ACL. Consequently, 
there is a renewed interest in revisiting ACL healing in 
order to avoid some of the complications resulted from 
surgical reconstruction.
In this article, we will first briefly review the biology of 
normal and healing ligaments and tendons, and then 
focus on the issues related to the treatment of ACL inju-
ries. Afterwards, we move on to the presentation of 
promising FTE methods for the treatment of ligament 
injuries, including the use of growth factors, gene deliv-
ery, and cell therapy, but a particular emphasis will be 
placed on the use of ECM bioscaffolds. To conclude, we 
will outline some challenging areas and suggest where we 
should put our energy in order to closely restore the 
structure and function of injured ligaments and tendons 
to their pre-injury levels.

Normal and Healing Ligaments and Tendons
Ligaments and tendons are dense connective tissue that 
connect bone to bone and bone to muscle, respectively. 
These tissues are relatively hypocellular, as well as hypo-
vascular[27-30]. Collagen fibers are the primary matrix 
structure, and approximately 70% to 80% of the dry 
weight of normal tendon or ligament is composed of type 
I collagen, which is primarily responsible for the stiffness 
and strength of these tissues. The collagen fibrils that are 
subunits of collagen fibers are surrounded by extrafibril-
lar matrix, such as water (65% to 70% of the total weight), 
elastin (5% to 7% of the dry weight), proteoglycans, and 
glycolipids[31,32]. Fibroblasts are the predominant cell 
type and are arranged in rows between bundles of parallel 
arranged collagen fibrils (Fig. 1). There are also minor 
types of collagen, including types III, V, X, XI, and XII[33-
36]. Type III collagen is responsible for ligament and ten-
don repair [35] whereas type V collagen is believed to 
exist in association with type I collagen to regulate the 
collagen fibril diameter[37,38]. Other collagens such as 
types XII and XIV, called fibril-associated collagens with 
interrupted triple helices (FACITs), are localized to the 
surface of the fibrils[34]. Type XII collagen is thought to 
provide specific bridges between fibrils and other matrix 
components, such as decorin and fibromodulin[36] while 
type XIV collagen is involved in linear fibril growth[39]. 
Other molecules involved in collagen fibril assembly are a 
group of small leucine-rich proteoglycans (SLRPs), such 
as decorin, lumican, biglycan, and fibromodulin[37,40-

44]. On the other hand, even though the morphological 
appearances of ligaments and tendons are similar to each 
other, there are substantial and important differences in 
terms of their biochemistry, hence their biomechanical 
properties[30,45-47].
Generally, ligaments and tendons are metabolically active 
with incessant cell renewal and matrix turnover albeit at a 
relatively slow rate[47]. Therefore, after injury, ligaments 
and tendons heal at a slower rate than most other soft tis-
sue because of their hypovasculariy as well as hypocellu-
larity. Further, their environment would have profound 
effects on their healing capabilities. For extra-articular 
ligaments, such as the MCL, the healing is spontaneous 
and classical. It can be divided into 4 overlapping phases: 
Phase I is featured by initial bleeding and blood filled into 
the gap with hemostasis during the initial 72 hours. A 
hematoma is developed to bridge the torn ends. This area 
is then infiltrated by inflammatory cells including mono-
cytes, leukocytes, and macrophages that secrete cytok-
ines and growth factors to start the healing process. 
Phase II, the cellular proliferation phase, is featured by 
inflammation reaction and granulation tissue formation 
with the arrival of fibroblasts that slowly populate the 
injured area and synthesize type III collagen and, to a 
lesser extent, type I collagen. Phase III has cell prolifera-
tion and matrix deposition forming a vascular neo-liga-
ment, while phase IV is featured by the organization of 
collagenous tissue to be arranged along the functional 
axis of the ligament as well as synthesis of higher propor-
tion of type I collagen and then long-term remodel-
ing[21].
Investigators have discovered that various cytokines are 
produced by the infiltrating cells. These endogenous 
growth factors such as platelet-derived growth factor 
(PDGF) and transforming growth factor beta (TGF-β) are 
present in high concentrations during Phase I and II. 
Studies found that after the initial surge, the level of 
growth factors started to decrease to baseline level from 2 
to 3 weeks of healing[48,49]. Such temporal growth factor 
responses at the initial phases of ligament healing are 
critical for the filling of tissue defect with neo-tissue and 
thereafter the restoration of function.
Knowledge on the mechanisms of ligamentous tissue 
healing has been accruing rapidly through intense stud-
ies, which will no doubt benefit the treatment of injured 
ligaments through properly designed functional tissue 
engineering approaches.

Issues Relating to Healing of the Anterior Cruciate 
Ligament (ACL)
In the case of the ACL, however, the manner of its healing 
is entirely different from those described above. Follow-
ing injury, the thin synovial sheath of ACL is disrupted, 
and blood dissipates in the synovial fluid, making the for-
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mation of a localized hematoma difficult. With such a 
lack of supply of cytokines and growth factors and a low 
supply of reparative cells at the injury site, the ability for a 
torn ACL to heal becomes limited[50-52]. In addition, its 
torn ends retract significantly because of the high resid-
ual strain existed in the intact ACL, making the bridging 
of the gap even more difficult[52]. Biologically, it is also 
found that the properties of ACL fibroblasts are different 
from those derived from other ligaments. They have 
comparatively low mobility, low proliferation and meta-
bolic activities as well as low matrix production tenden-
cies[53-55]. The cells actually further exhibit higher 
matrix metalloproteinases (MMPs) activities and poor 
adhesive strength[56,57]. With all these factors added to 
the local environmental constraints, the intra-articular 
ACL rupture, especially at midsubstance, failed to heal on 
its own.
Clinically, primary repair of ACL using sutures began 
with A.W. Mayo in 1903 and then followed by O'Dono-
ghue, Feagin, and many others[58-61]. Overall, the results 
had not been encouraging as they were not different from 
conservative treatment[59,62-67]. As much as 70% of the 
patients had knee instability[59,65,67]. Therefore, ACL 
reconstruction using autografts and allografts has 
become popular for a treatment. It is estimated that over 
100,000 ACL reconstructions are performed in the 
United States annually with the majority of which using 
either hamstrings or bone-patellar tendon-bone 
autografts[68-73]. Although the use of the latter offers 

the advantage of direct bone to bone fixation for better 
initial knee stability, the associated problems such as 
donor site morbidity, knee pain, extensor deficit, and 
other side effects have led many surgeons to use the ham-
strings autograft[10,66,74-80]. Nevertheless, there are 
problems associated with bone-soft tissue healing, less 
knee stability, tunnel enlargement, graft motion in the 
bone tunnels, etc.[9-11,14]. In either case, many patients 
had good knee stability and after a period of rehabilita-
tion following surgery, they could return to work or 
sports. However, in the long term, 20-25% of the patients 
showed less than satisfactory results with some progress-
ing to knee osteoarthritis[81-87].

Functional Tissue Engineering for ACL Healing
More recently, efforts have begun to focus on alternative 
approaches that can avoid the problems that associated 
with ACL reconstruction. A healed ACL has many 
advantages including the preservation of its native inser-
tion sites as well as its proprioceptive function. Clinical 
techniques like the 'healing response' by making microf-
racture holes in the femur close to the ACL insertion was 
pioneered by Steadman. It aims to introduce blood clot to 
the injured ACL encouraging hematoma formation and 
bring in more reparative cells to heal the torn 
ACL[51,88,89]. For patients over 40 years of age that have 
proximal ACL tears, this procedure has successful 
results[88]. On the other hand, there are also experimen-
tal evidences showing that a transected ACL might heal 

Figure 1 Histological image of rabbit medial collateral ligament showing highly organized collagen fibers and the spindle shaped fibro-
blasts (Masson's Trichrome staining at a magnification of 200 ×).
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with exogenous aids, such as the supplementation of 
growth factors or use of a scaffold[90-94]. It has been 
shown that the ACL cells can proliferate and make matrix 
following FTE treatment[95,96].
FTE is a new field that combines morphology, molecular 
biology, biochemistry, biomechanics, and other areas. For 
ligaments, it is particularly important to consider their 
functional roles in the design and development of novel 
FTE approaches including the use of growth factors, gene 
transfer/gene therapy, cell therapy, and extracellular 
matrix bioscaffolds. Specifically, besides the encourage-
ment for cell proliferation and matrix production, the 
unique characteristics of the dense regular connective tis-
sue, the natural anatomical insertions to the bones as well 
as the structural and mechanical properties that are criti-
cal for the function of ligaments to sustain and transfer 
loads, should also be the targets of an optimal FTE treat-
ment. Previous works had reported the use of hyaluronic 
acid (HA), basic fibroblast growth factor (bFGF), colla-
gen-platelet rich plasma (C-PRP) as well as stem cells to 
heal the central ACL defects[90-94], and all have shown 
an increased vascularization, increased tissue formation 
as well as improvements in some of the biomechanical 
properties. The following is a brief review of more recent 
available approaches aiding in the healing of ACL in the 
laboratory. These methods are the major biological aug-
mentations used in the field of tissue engineering.

Growth factors
Due to their important physical functions in the regula-
tion of cell responses to injury, the use of growth factors 
can be advantageous to heal injured ligaments. In the lit-
erature, different growth factors such as FGF, TGF-β, 
PDGF, epidermal growth factor (EGF), insulin-like 
growth factor (IGF), growth and differentiation factor 
(GDF) and nerve growth factor (NGF) have been shown 
to improve vascularization and new tissue formation that 
resulted in improved structural properties of ligament-
bone complex[97-101]. These growth factors also exhib-
ited positive effects on improving ACL healing. In an 
ACL central defect model in dogs, the bFGF pallets 
caused healing tissue formation with increased vascular-
ity at early stage compared to little or no tissue formation 
in the control[94]. In addition, the application of PRP, 
which contains increased presence of various growth fac-
tors, was also reported. It was found that the collagen-
PRP complex could significantly increase the tissue for-
mation of an ACL central defect in a canine model and 
enhance the structural properties of the femur-ACL-tibia 
complex (FATC) of a completely transected ACL after 
primary repair in a porcine model[92,102,103].
The potential of synergistic effects of two or more growth 
factors has also been explored. A combination of PDGF-
BB/TGF-β1 did not enhance the structural properties of 

the healing FMTC compared to the use of PDGF-BB 
alone[104]. Clearly, the healing process of ligaments is 
much more complex than simply supplementing certain 
growth factors. Considering the milieu around the heal-
ing tissue differs in location and changes with time, strat-
egies of treatment could be more specific. Further, 
growth factors have short half-lives, which have limited 
their efficacy. Therefore, safe and reproducible delivery 
systems that would allow sustained delivery of growth 
factors to the injury site need to be vigorously investi-
gated[105-107]. Potential of using synthetic PLGA micro-
spheres, fibrin-heparin delivery system, and metallic 
porous materials and so on as well as refinement of these 
systems are being investigated[108].

Gene transfer/Therapy
Gene transfer using carriers including both retroviral and 
adenoviral vectors as well as liposomes have been used to 
induce DNA fragments into healing ligaments by pro-
moting or depressing the expression of certain 
genes[109]. An in situ gene transfer of TGF-β1 using an 
adenoviral vector in a collagen hydrogel placed between 
the stumps of a ruptured ACL resulted in an increase in 
the cellularity and the deposition of type III colla-
gen[110]. Similarly, transfer of IGF-1 cDNA by using an 
adenovirus vector led to the synthesis and deposition of 
increased amounts of types I and III collagen, elastin, 
tenascin, and vimentin in the same model[111]; thus con-
firming the potential of using vector-laden hydrogels for 
the in situ delivery of genes to damaged ligaments for 
potential biological repair of the ACL.

Cell therapy
Mesenchymal progenitor cells (MPCs) and mesenchymal 
stem cells (MSCs) have shown tremendous potential in 
tissue engineering[112,113]. MSCs isolated from a variety 
of adult tissues including the bone marrow (BM) have the 
capacity to differentiate into different cell types and 
therefore are attractive to be used as a potential therapeu-
tic tool for tissue repair. In our research center, it was 
found that MSCs implanted in the injured rat MCL dif-
ferentiated into fibroblasts[114]. Further, when an MSC-
seeded implant was delivered to an Achilles tendon with 
1cm gap injury, the healing tissue was grown with a sig-
nificantly larger cross-sectional area, and the collagen 
fibers appeared to be better aligned than those in the con-
trols[115]. Similarly, an autologous MSC collagen graft 
could accelerate the healing as well as improve the quality 
of healing tissue of patellar tendon in rabbits[116]. Know-
ing these positive findings, an intra-articular injection of 
bone marrow derived mysenchymal cells in a rat model 
with partially transected ACL was done and the forma-
tion of healing tissue was found. Consequently, the ulti-
mate failure load of FATC was increased when compared 
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to non-treated control[117]. These results are encourag-
ing because the MSCs have the potential to serve as a 
vehicle for delivering therapeutic molecules as well as 
directly enhance the healing of ligaments.
Although it is an appealing property that the MPC/MSCs 
have the potential to differentiate into many kinds of cell 
types, how to differentiate these multi-pluropotent cells 
into a desired specific cell type are still under investiga-
tion. Thus, research in the field presents new challenging 
opportunities in developing novel techniques for opti-
mizing the stem cell system as well as their application in 
the regeneration of ACL.

Extracellular matrix bioscaffolds
Bioscaffolds derived from extracellular matrix (ECM), 
such as the porcine small intestinal submucosa (SIS) and 
urinary bladder membrane (UBM), have been found to 
support tissue regeneration and repair of ligaments and 
tendons[118-129]. SIS is mainly composed of collagen 
(90% of dry weight) and contains cytokines and growth 
factors such as FGF and TGF-β[130,131]. It is a resorb-
able bioscaffold that can provide a collagenous structure 
for the healing cells to reside as well as hold nutrients 
necessary for healing[118].
We have applied the SIS bioscaffold to treat a central 
third defect of patellar tendon in a rabbit model, which is 
commonly the donor site of autografts for ACL recon-
struction. It was found that the bioscaffold could encour-
age neo-tissue formation in the defect and consequently, 
the structural properties of the bone-patellar tendon-
bone construct were significantly improved[132]. Further, 
with a single layer of SIS applied to a 6mm gap injury of 
the rabbit MCL, the quality of the healing tissue was sig-
nificantly improved. The morphology showed aligned 
collagen fibers, while the gene expressions of the fibrillo-
genesis-related molecules such as collagen V and some 
SLRPs were down-regulated with concomitant increases 
in the collagen fibril diameters (Fig. 2). Correspondingly, 

the tangent modulus and the stress at failure of the heal-
ing MCL were increased by about 50%[123-126].
With these successes, we have used the SIS bioscaffolds 
for ACL healing. Using a goat stifle joint as a model, we 
combined the SIS bioscaffold with SIS hydrogel to heal a 
transected ACL following primary repair[133]. After 12 
weeks, the gap was filled with continuity of neo-tissue 
formation with a similar cross-sectional area and shape as 
the sham-operated ACL. The neo-tissues were slightly 
reddish in color and less opaque than the sham-operated 
control ACLs which indicated that the fibers in the neo-
tissue was still not as dense (Fig. 3). Histologically, the 
collagen fibers were aligned with spindle shaped fibro-
blasts at 12 weeks. Functional measurements on knee 
kinematics and in-situ forces were done using a novel 
robotic/universal force-moment sensor (UFS) testing sys-
tem developed in our research center[25,134,135]. When 
an external 67 N anterior-posterior (A-P) tibial load was 
applied to the stifle joint at flexion angles of knee 30°, 60°, 
and 90°, the resulting A-P joint instability in the ECM-
treated group were significantly reduced to 63%, 49%, and 
47% of those for the ACL-deficient joints, respectively. 
Meanwhile, in-situ forces of the neo-ACL were similar to 
those of the intact ACL. Together, these data suggest that 
the ECM treated healing ACLs could contribute posi-
tively to knee function. Uniaxial testing of the FATC also 
showed that the tensile stiffness of the ECM-treated ACL 
reached 42% of the normal ACL at 12 weeks post-surgery, 
which was comparable to the results of ACL reconstruc-
tion. These findings indicate that the application of ECM 
bioscaffolds plus ECM hydrogel should have the potential 
to be a good candidate tool for ACL healing.

Future directions
Research to enhance ligamentous tissue healing and 
regeneration has reached an exciting time as new devel-
opments on both biological and biomechanical augmen-
tation can be used to improve their outcome. With 

Figure 2 Transmission electron microscopy images of cross sectional view of collagen fibrils in (A) Normal MCL; (B) Healing MCL at 6 weeks; 
and (C) SIS-treated healing MCL at 6 weeks. F indicates fibroblasts. Arrow points to the large newly formed collagen fibrils.
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functional tissue engineering, the ECM bioscaffolds 
could be further improved via mechanical stimuli and cell 
seeding to alter their ultrastructure to be closer to that of 
the highly aligned collagen fiber network of native liga-
ments [136-139]. Another area for future studies will 
involve the use of the ECM bioscaffolds derived from 
genetically modified pigs, such as those with the galac-
tose α1,3-galactose (αGal) deficiency, to reduce hyper-
acute rejection of the xenograft in humans[140]. With the 
reduction or elimination of the immunogenicity from the 
ECM bioscaffolds, its usage will be more widely accept-
able [141-144].
Studies should also be done to control the release of 
growth factor. New delivery system will be needed such 
that the sustained release of growth factors could stimu-
late the healing process over time in order to mimic the 
expression of growth factors in vivo that last long time 
after tissue injury.
Finally, there is another class of scaffolds that will be 
available in the field, i.e., biodegradable metallic materials 
such as porous magnesium or magnesium oxide, that 
have the potential to facilitate ligament and tendon heal-
ing and regeneration[145-147]. The advantages of these 
"smart" scaffolds include their initial stiffness and con-
trollable degradation rate as they are replaced by the neo-
tissue formation. It is also possible to protein-coat these 
metals for better tissue integration and control release of 
growth factors and cytokines to sustain tissue healing as 
well as to guide tissue regeneration.

Conclusions
Clearly, much work remains but there are exciting possi-
bilities. All will require much interdisciplinary and multi-
disciplinary research. We believe that when biologists, 
biochemists, clinicians, and bioengineers are teaming 
together with other experts, it will be possible to make 
positive advances on ligament and tendon regeneration. 
In the end, more complete recovery of these tissues will 
allow patients to resume their daily activities as well as 
sports.
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Figure 3 Gross morphology of (A) Sham-operated ACL; and (B) ECM-treated healing ACL at 12 weeks (permission requested from Woo et 
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