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Abstract

Background: Omega3 fatty acids as a ligand of energy-related genes, have a role in metabolism, and energy
expenditure. These effects are due to changes in the expression of peroxisome proliferator-activated receptor-
gamma (PPARγ) and uncoupling protein2 (UCP2). This study evaluated the effect of omega3 supplements on PPARγ
mRNA expression and UCP2 mRNA expression and protein levels, as regulators of energy metabolism, resting
energy expenditure (REE), and appetite in athletes.

Methods: In a 3-week double-blind RCT in Tabriz, Iran, in 2019, 36 male athletes, age 21.86 (±3.15) y with 16.17 (±
5.96)% body fat were randomized to either an intervention (2000 mg/day omega3; EPA: 360, DHA: 240) or placebo
(2000 mg/day edible paraffin) groups. Appetite and REE were assessed before and after the intervention. PPARγ and
UCP2 mRNA expression and UCP2 protein levels in blood were evaluated by standard methods.

Results: Results showed PPARγ mRNA levels, and UCP2 mRNA and protein levels increased in omega3 group (p <
0.05), as did REE (p < 0.05). Also, differences in the sensation of hunger or satiety were significant (p < 0.05).

Conclusions: Our findings showed that omega3 supplementation leads to the up-regulation of PPARγ and UCP2
expressions as the indicators of metabolism in healthy athletes.
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Background
Body composition is important for athletes in various
types of sports because performance is affected by the
ratio of fat mass (FM) and fat-free mass (FFM) [1–3].
For many athletes reducing body fat, it is associated with
improved performance, such as material arts, and hand-
ball [4, 5]. Although, many factors change body compos-
ition, most of these factors are related to the body’s

metabolism [6, 7]. Nutrition and physical activity are im-
portant lifestyle factors that affect metabolic markers as-
sociated with energy metabolism [8]. Studies showed
nutrients such as omega3 fatty acids have potential to
reduce FM accumulation particularly visceral fat [9–17].
The effect of omega3 fatty acids on weight (fat) reduc-
tion is due to increased fat oxidation, and energy ex-
penditure [10]. Omega3 alters multiple signaling
pathways, including those related to p21, p53, nuclear
f4ractor κB, and STAT [18, 19].
Omega3s, which are essential for humans, mainly in-

clude eicosapentaenoic acid (EPA; 20:5), and
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docosahexaenoic acid (DHA; 22:6) from marine foods
and supplements [20–25]. It is recommended that adults
consume 500mg/day of EPA and DHA by two servings
of oily fish such as salmon, herring, and mackerel per
week [26]. But the intake of omega3 from foods contrib-
utes to the provision of only a small amount of daily re-
quirements [27]. Thus, the American Heart Association
recommends if the adults do not consume enough fish,
they should consume omega3 supplements [13].
On the other hand, omega3 could act as a ligand

for peroxisome proliferator-activated receptor gamma
(PPARγ) [8, 28]. PPARγ is a steroid nuclear transcrip-
tion factor that regulates the expression of many
genes to modulate energy metabolism, cell differenti-
ation, and apoptosis [29–31].. PPARγ is mainly
expressed in adipose tissue and is directly related to
adipocytes [32]. An animal study showed omega3
fatty acids decrease fat in adipose tissue through the
expression of PPARγ [30]. However, few studies on
humans have been conducted. Although, the results
of these studies imply that PPARγ gene expression
partially controlled by nutritional regulation [10, 30].
PPARγ activates the expression of other genes in-
volved in energy metabolism, such as uncoupling pro-
tein 2 (UCP2). UCP2 is located in the inner
mitochondrial membrane and promotes leakage of
protons. Changes in the proton gradient affects ATP
production. The expression of the UCP2 decreased in
cardiovascular diseases [33–36]. But the effect of
omega3 supplementation on UCP2 mRNA expression
and UCP2 protein is controversial [37–40].
Interestingly, UCP2 up-regulates PPARγ expression,

and their effect on metabolism may be synergistic [41, 42].
As the PPARγ and UCP2 genes expression are increased,
the production of various hormones and neurotransmit-
ters are enhanced. This process increases the proteins that
affect metabolism, and resting energy expenditure. Also,
changes in the expression of these genes could change
blood lipids, fat mass, and appetite [43–46]. For example,
increasing PPARγ expression suppresses ghrelin and thus
reduces appetite [47]. Another study showed UCP2 sup-
presses appetite by modulating ghrelin expression [48]. As
a change in appetite could alter the food intake, it might
affect fat accumulation and metabolism [47, 49].
So far no study has directly examined the relation-

ship between omega3 supplementation, expression of
metabolism-related genes, and mitochondrial pro-
teins. Considering that maintenance of optimal body
composition is important for many athletes, this
study aimed to determine the effect of omega3 sup-
plementation on the expression of the PPARγ,
UCP2, and the concentration of UCP2 protein in the
blood, resting energy expenditure, and appetite in
healthy athletes.

Method
Subjects and study design
This was a randomized double-blind placebo-controlled
trial involving 36 athlete men. The duration of the pro-
ject was three weeks. Following a public announcement
of the study, volunteers who willing to participate were
recruited from public and private gyms, teams, stadiums,
councils, and departments of sports, departments of
physical education, and the sports medicine board in Ta-
briz, Iran. After being given a full explanation of the
study procedures, participants who agreed to enroll in
the study signed a statement of informed consent before
the commencement of baseline data collection. The
study procedure and the informed consent form were
approved by the ethics committee of the medical univer-
sity of Tabriz (IR.TBZMED.REC.1398.782) in October
2019, and the procedures were performed in accordance
with relevant guidelines. The trial was registered at the
Iranian registry of the clinical trial website (www.irct.ir)
as IRCT20190625044008N1 (https://en.irct.ir/trial/43332
), registered at (19/12/2019).

Inclusion/exclusion criteria
The inclusion criteria were: 1) athlete volunteers who
were ranked nationally or players of a professional sports
league (football, volleyball, swimming, etc.); 2) age range
of 20 to 30 years; 3) BMI between 18.5 to 25 kg/m2; 4)
avoidance of any dietary supplements, vitamins, min-
erals, and protein powders at least six months before
and throughout the intervention; 5) Not having a history
of coagulopathy blood disease, liver damage, kidney dis-
ease, pancreatitis, inflammatory diseases, diabetes, can-
cer, thyroid disorders,, and heart disease; 6) not
smoking. The exclusion criteria were: 1) allergic re-
sponse to the omega3; 2) unwillingness for cooperation;
3) any major change in diet, duration, level, or type of
physical activity and regular lifestyle;

Sample size
The sample size was estimated by considering the ex-
pected differences (d) between the two studied groups
for one of the main outcomes (REE was used from a pre-
vious clinical trial [44]). We calculated the sample size
as follows: d = 3.77 Z1-α/2 = 1.96 α = 0.05 1-β = 0.90 Z1-
β = 1.282

n ¼
z1−

α
2

� �
z1−βð Þ

� �2
� SD1þ SD2ð Þ2

� �,

dð Þ2

According to the equation above, the sample size was
calculated as 14 in each group and we selected 18 in
each group, to account for a possible 30% loss to follow-
up or discontinued intervention.
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Randomization, blinding, and study procedures
Participants who met the eligibility criteria were ran-
domly assigned to the omega3 (n = 18) and placebo (n =
18) groups. For randomization, a blinded colleague who
was not involved in any of the study stages randomly di-
vided the participants into the intervention and placebo
groups (1:1) by using RAS (Random Allocation Soft-
ware). Omega 3 or placebo containers with identical la-
beling and they were similar in terms of color, shape,
and size. Gelatin capsule supplements and placebo were
stored at room temperature. The adequate intake of
omega3 for men between the ages of 19–50 years is
1600 mg per day. In similar previous studies, the dose of
omega3 supplementation ranged from 200mg to 6 g per
day, and by considering the low amount of omega3 in of
the Iranian diet, an effective dose at 2 g per day was
intended for this study [50–53]. Participants were strati-
fied into two groups:

1) The Omega 3 group receiving supplements of two
Omega 3 soft gel capsules per day (Zahravi
Pharmaceutical Co, Tabriz, Iran, consists of 240 mg
of DHA, 360 mg EPA).

2) The placebo group receiving placebo two soft gel
capsules per day, each capsule containing one g of
edible paraffin oil (provided by Zahravi
Pharmaceutical, Co., Tabriz, Iran).

Participants were asked to return bottles of supple-
ment and the compliance of participants was evaluated
by counting the number of unconsumed capsules at the
end of the intervention. None of the participants who
completed the trial had compliance less than 90%; there-
fore, no participants were excluded for inadequate com-
pliance. Participants were advised to maintain their
regular diet and level of physical activity during the
study. Participants were contacted weekly to track any
problems or adverse events, reminded to take their sup-
plements, and to evaluate whether diet or physical activ-
ity had changed. None of the participants were excluded
because of substantial changes in diet or physical activ-
ity. Adverse events were also tracked for a week after the
end of the intervention.

Assessment of physical activity
Physical activity levels were estimated with the global
physical activity questionnaire (GPAQ) [54]. A trained
researcher filled out the questionnaire for each partici-
pant via face-to-face interview. The validity and reliabil-
ity of the GPAQ have been previously confirmed [55].
Data were processed according to guidelines for analysis
of the GPAQ and total metabolic equivalents score
(MET-minutes/week) was calculated, with participants

categorized as high (≥3000 METs), moderate and low (<
3000 METs) levels of activity.

Assessment of appetite
A 10 cm visual analog scale (VAS) questionnaire (with
six items: hunger, satisfaction, desire to eat, desire to eat
sweet, desire to eat salty, desire to eat fatty) were com-
pleted in the morning after fasting and after giving blood
samples. The validity and reliability of this questionnaire
were previously reported [50].

Anthropometric and blood pressure measurements
Anthropometric parameters were measured in a fasting
state. The measurements were performed by a trained
nutritionist. Body mass was measured to the nearest 0.1
kg with minimal clothing and without shoes using a
digital Seca Beam Balance (Seca, Hamburg, Germany).
Height was measured to the nearest 0.1 cm without foot-
wear using a stadiometer in a standing position (Seca,
Hamburg, Germany) Body composition was assessed by
bioelectrical impedance analysis using the Tanita MC-
780 S MA (Amsterdam, the Netherlands). Blood pres-
sure was measured in a comfortable sitting position on
the left arm using an aneroid sphygmomanometer and
stethoscope after at least five-minutes rest on two occa-
sions and the mean of the two was taken as the individ-
ual’s blood pressure.

REE measurements
Resting energy expenditure (REE), and maximum oxygen
consumption (VO2 max) ml/min was measured by in-
direct calorimetry using the Fitmate Pro (Cosmed,
Rome, Italy), which has good validity and reliability for
assessment of REE in adults [56]. Energy expended dur-
ing human performance can be measured by the volume
of oxygen witch can consume while exercising at max-
imum capacity. VO2 max is the maximum rate of oxy-
gen consumption.

Blood preparation for protein analysis
5 ml of whole blood was collected from all participants
after 10–12 h of overnight fasting. 1 ml was transferred
to a sterile microtube without any anticoagulant, centri-
fuged at 3000 RPM for 5 min, and the separated serum
stored at − 70 °C until UCP2 was measured. The
enzyme-linked immunosorbent assay (ELISA) method
was applied to measure serum UCP2 protein by com-
mercial kits (Shanghai Crystal Day Biotech Co., LTD,
China) (Intra-assay Precision (Precision within an assay):
CV% < 8%; Inter-assay Precision (Precision between as-
says): CV < 10).
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Gene expression assessment
For measurement of gene expression, the remaining
4 ml of whole blood was used for the isolation of
peripheral blood mononuclear cells (PBMCs) imme-
diately after collection in tubes containing EDTA
with anticoagulant (Vacutainer K2E). PBMCs were
isolated by Ficoll Hypaque density-gradient centrifu-
gation (Miltenyi Biotech GmbH, Bergisch Gladbach,
Germany). Total RNA purification was conducted by
using the Ambion trizol reagent (Thermo Fisher Sci-
entific), according to the manufacturer’s protocol.
The quantity and quality of the RNA was assessed
by using NanoDrop Spectrophotometry (NanoDrop
OneC; Thermo Fisher Scientific). Then, complemen-
tary DNA (cDNA) synthesis was done according to
the manufacturer’s protocol (ExcelRT One-Step RT-
PCR Kit; smobio).
The integrity of the total RNA of the participants’

samples were assessed by gel electrophoresis (on a 1%
agarose gel). For Real-time polymerase chain reaction,
the PPARγ and UCP2 gene sequences were acquired
from the National Center for Biotechnology Information
(NCBI) and Ensembl (http://asia.ensembl.org/) data-
bases. The OLIGO7 Software (Molecular Biology In-
sights, Inc., Cascade, CO) was used for designing the
primer pairs PPARγ and UCP2 of mRNA sequence.
Table 1 shows the PPARγ, UCP2, and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) sequences of
primers for the polymerase chain reaction. The level of
PPARγ and UCP2 mRNA were examined using SYBR
Green Master Mix (RealQ Plus 2x Master Mix Green,
ampliqon, Denmark). The primer sequences for the hu-
man genes of PPARγ, UCP2, and GAPDH (as a house-
keeping gene) were evaluated, and the data normalized
to GAPDH mRNA expression by using the ΔΔCT com-
parative method. The fold changes of the PPARγ and
UCP2 mRNA were calculated by using the REST Soft-
ware as the relative expression of post-intervention/pla-
cebo [57].

Statistical analysis
The analyses were performed using STATA version 16
(StataCorp, College Station, TX, USA). Normality was
checked by the Kolmogorov- Smirnov and Shapiro-Wilk
test. Data were expressed as mean (SD) and frequency
(percent) for categorical variables. Between-group com-
parisons of baseline measures and demographic variables
were done by independent t-test, Mann-Whitney U test,
and/or Chi-square test where appropriate. For within-
group comparisons analysis of covariance (ANCOVA)
and Wilcoxon sign-rank test were used, respectively, be-
fore and after intervention. In all analyses, P values less
than 0.05 were considered as significant.

Results
Of the 373 volunteers who were screened by phone, 46
met all inclusion/exclusion criteria. However, after a face
to face meeting, 10 were excluded due to refusing to
participate further. Therefore, a total of 36 participants
completed the study (omega3 group n = 18; placebo
group n = 18). The mean age of all participants was
21.86 (±3.15) years. The participants were athletes in at
last one field (football n = 9, volleyball n = 3, basketball
n = 4, athletics n = 2, archery n = 1, martial arts n = 6,
swimming n = 4, weightlifting n = 3, wrestling n = 1, rock
climbing n = 3). Table 2 shows the baseline demographic
characteristics, blood pressure, and physical activity for
intervention and placebo groups. There was no signifi-
cant difference for any demographic parameter between
groups. No adverse effects were reported by any of the
participants at any stage of the study. Figure 1 shows the
study flow diagram.

Effects of omega3 on the REE
As presented in Table 3, VO2 max, and REE were in-
creased significantly in the omega3 group (p < 0.05).
Also, REE was increased by 10.67% in the omega3 group
(p < 0.001), and after baseline adjustments, the increase
was 22.83% (p < 0.01).

Effects of omega3 on appetite
Figure 2 presents VAS score at baseline and end of the
study in omega3 and placebo groups. After three weeks
of omega3 consumption, the sensation of hunger, desire
to eat, desire to eat sweet taste, and desire to eat salty
foods increased, but satiety and desire to eat fat de-
creased (p < 0.05).

Effects of omega3 on the UCP2 levels in the blood
Table 4 compares the levels of UCP2 protein between
study groups at baseline and the end of the intervention.
The amount of UCP2 in blood was increased signifi-
cantly in the intervention group (MD = 6.48 μg, p =
0.001), but decreased in the placebo group by 0.32 μg

Table 1 The sequences of PPARγ, UCP2, and GAPDH primers
for polymerase chain reaction

Name Base pair Sequences (5′ 3′)

UCP2 (Forward) 18 GGCTGGAGGTGGTCGGAG

UCP2 (Reverse) 22 CAGAAGTGAAGTGGCAAGGGAG

PPARγ (Forward) 20 CTTCCATTACGGAGAGATCC

PPARγ (Reverse) 19 AAAGAAGCCAACACTAAAC

GAPDH (Forward) 20 CTGACTTCAACAGCGACACC

GAPDH (Reverse) 23 CGTTGTCATACCAGGAAATGAGC

PPARY Peroxisome proliferator-activated receptor-gamma, UCP2 Mitochondrial
uncoupling protein 2, GAPDH glyceraldehyde 3 phosphate dehydrogenase
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(p = 0.009). Compared to baseline levels, UCP2 increased
by 7.17 μg (95% CI = 4.02, 12.85; P = 0.04).

Effects of omega 3 fatty acids on PPARγ and UCP2 gene
expression
The Omega 3 and placebo groups had a significant dif-
ference in the fold change of PPARγ gene expression
(p < 0.05). The mean (SE) fold change expression of
UCP2 in comparison to GAPDH, in the Omega 3 group
was 3.87 (0.31) and in the placebo group was 1.14 (0.14).
Also, the Omega 3 and placebo groups also showed a
significant difference in the fold change of PPARγ gene
expression (p < 0.05). Mean (SE) fold change expression
of in comparison to GAPDH, in the Omega 3 group was
3.37 (0.51), and in the placebo group was 1.30 (0.29).
Figure 3 shows the difference between gene expressions
of PPARγ and UCP2 in Omega 3 and Placebo groups.

Discussion
A large body of research has focused on PPARγ as a
regulator of energy metabolism. On the other hand,
many studies suggest that omega3 improves metabolism
and homeostasis through the regulation of genes related
to PPARγ signaling but the exact mechanisms were not
known [29, 58]. Our results revealed that the level of
PPARγ mRNA expression is significantly up-regulated in
athletes who were administered omega3 supplements

(p < 0.05). In line with our data, cell culture and animal
studies demonstrate Omega 3 supplementation in-
creased the expression of PPARγ [59–61]. Also, previous
human studies showed in patients with obesity, diabetes
mellitus, and gestational diabetes mellitus, omega3 sup-
plementation unregulated gene expression of PPARγ
[62–64]. A few studies showed omega3 had no signifi-
cant effects on PPARγ mRNA levels in cultured cells,
and even patients with diabetes mellitus [59, 65, 66] and
one study indicated that twelve-weeks of omega3 supple-
mentation in adolescents with obesity down-regulated
PPARγ mRNA expression [58]. A lack of an effect of
omega3 on PPARγ gene expression could be a conse-
quence of a low expression of retinoid X receptor (RXR),
as a heterodimer of PPARγ [60]. In light of these studies
and our study, it seems that omega3, as a ligand of
PPARγ, could up-regulate PPARγ mRNA expression.
Further studies may be required to discover the exact
molecular basis by which omega3 supplementation af-
fects PPARγ expression.
By activating PPARγ, omega3 supplementation may

enhance mitochondrial fatty acid oxidation [67]. One of
the main promoters of oxidation in mitochondria are
uncoupling proteins, especially UCP2 [42]. As presented
in this study, after omega3 supplementation, UCP2
mRNA expression increased by 3.85 fold. Many cell cul-
ture and rodent studies show EPA or DHA increases

Table 2 Baseline characteristics of the study participants

Variables Omega-3 Group (n = 18) Placebo Group (n = 18) p

Age (year)a 21.8 (3.71) 21.8 (2.59) 0.05c

Education b

< Bachelor 8 (44.4) 4 (22.2) 0.07d

Bachelor Student 10 (55.5) 10 (55.5)

≥ Bachelor 0 (00.0) 4 (22.2)

Marital status b

Single 15 (83.3) 16 (88.8) 1.00c

Married 3 (16.6) 2 (11.1)

SBP (mmHg)a 110 (100) 110 (110) 0.96c

DBP (mmHg)a 70 (70.7) 71.5 (70.7) 0.60c

Physical activity levelb

Low and Moderate 8 (44.4) 10 (55.5) 0.74c

High 10 (55.5) 8 (44.4)

Physical activity (Met- minute /week)a 3143 (3147) 2711 (2782) 0.44c

Weight (Kg)a 73.9 (12.3) 71.8 (13.6) 0.62c

Body fat (percent)a 16.4 (5.27) 15.8 (6.11) 0.76c

FM (kg)a 12.7 (6.31) 12.1 (6.25) 0.76c

FFM (kg)a 61.2 (6.80) 59.7 (7.99) 0.56c

aMean (standard deviation). bFrequency (%)
cBased on independent-samples t-test. dBased on Chi-Square test
SBP Systolic blood pressure, DBP Diastolic blood pressure, Met Metabolic equivalent of task, FM fat mass, FFM fat free mass

Moradi et al. BMC Sports Science, Medicine and Rehabilitation           (2021) 13:48 Page 5 of 12



UCP2 expression [68–72]. In agreement with our results,
fish oil feeding can up-regulate mRNA of the UCP2
mRNA by five fold in mice [73]. Mice fed with omega3-
containing food increased UCP2 mRNA in white adipose
tissue 2.7 fold [72, 74]. Also, in mammals, UCP2 protein
levels increase by the effect of omega3s [37]. In humans,
two months of DHA-enriched food in football players
increased UCP2 expression, although it was concluded
that this enhancement might have been caused by oxida-
tive stress due to exercise [75]. Another study showed
eight weeks of DHA supplementation increased UCP2
protein levels after training [76]. In contrast to our
study, two animal studies showed DHA and DHA-rich
tuna oil did not affect UCP2 expression in rodents [77,
78] and an additional study demonstrated EPA sup-
pressed overexpression of UCP2 in mice [79]. Another
study found that after fish oil supplementation UCP2

was actually down-regulated [80]. The reason for these
contrasting results could be due to different doses and
duration of supplementation, the different conditions in
cell cultures, and also the differences in the body com-
ponents assessed across studies. In this regard, further
studies are required to assess the different changes in
UCP2 by omega3 supplementation in different health or
disease conditions. Figure 4 shows the relation of omega
3 fatty acids, PPARγ and UCP2 in the terms of energy
metabolism.
As appetite is regulated by metabolic hormones and

neurotransmitters, the genetic factors that affect metabol-
ism (including PPARγ and subsequently UCP2 expres-
sion) could affect hunger sensation [43–46]. Barazzoni
et al. (2004) showed appetite increased in rodents by in-
creasing in PPARγ mRNA expression [81]. To our know-
ledge until now no study investigate this relationship in

Fig. 1 Flow diagram

Moradi et al. BMC Sports Science, Medicine and Rehabilitation           (2021) 13:48 Page 6 of 12



human. However, in our study increased PPARγ is related
to increased appetite. Results across studies vary, however,
as it has also been shown that increasing PPARγ expres-
sion suppresses ghrelin mRNA expression and thus re-
duces appetite and obesity [47, 48].
Appetite sensations are related to energy balance in

the long term and can be affected by dietary factors such
as omega3 fatty acids [82]. In our study, omega3 supple-
mentation for three weeks increased hunger sensation

(and desire to eat), and also decreased satiety. In agree-
ment with these results, studies with similar duration
(three weeks) demonstrated omega3 supplementation
decreased satiety or increased hunger with 3.5 g omega3
or a combination of omega3 and omega6 in healthy indi-
viduals [49, 83]. However, in contrast to our study,
weight loss program in individuals with overweight and
obesity imply that omega3s may increase fullness, sup-
press appetite, or decrease hunger [84]. Differences in

Table 3 Comparison of the REE between study groups before and after the intervention

Variable Omega-3 Group (n = 18) Placebo Group (n = 18) MD (95% CI), P

VO2 max (mL/kg/min)

Before 264 (61.1) 219 (57.9) 44.9 (4.62, 85.2), 0.98b

After 280 (66.6) 225 (48.9) 54.5, (14.9, 94.1), 0.01a

MD (95% CI), pa −15.7 (−29.5, − 1.94), 0.03 −6.17 (−23.3, 11.0), 0.46

REE (kcal/day)

Before 1792 (311) 1527 (404) 265 (20.4, 509), 0.98b

After 2012 (401) 1557 (344) 454 (201, 708), 0.01c

MD (95% CI), pa − 220(−341, −98.3), 0.01 −30.6(−181, 120), 0.67

REE%

Before 99.5 (20.1) 85.3 (22.2) 14.1 (− 0.27, 28.5), 0.05b

After 110 (23.1) 87.3 (19.7) 22.8 (8.27, 37.3), 0.01c

MD (95% CI), pa −10.6(−16.1, −5.14), 0.01 − 1.94(− 7.79, 3.90), 0.49

Data are presented as Mean (standard deviation)
a p based on paired samples t-test
b p based on independent-samples t-test
c based on ANCOVA adjusted for baseline values
CI confidence of interval, MD mean differences, REE resting energy expenditure, VO2 max Maximal oxygen consumption

Fig. 2 VAS score at baseline and end of the study in omega3 and placebo group. Solid lines reveal intervention group, and dash lines
demonstrate placebo group. VAS: Visual analogue scale
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study populations, dose, and duration of intervention,
physical activity, and nutrient intakes can be considered
as reasons for conflicting results.
Our study showed an increase in resting energy ex-

penditure with omega3 supplementation. UCP2 protein
has been associated with resting energy expenditure, as
subjects with obesity and low level of UCP2 protein have
low resting energy expenditure [44]. In healthy humans,
the effect of omega3s on REE (i.e. resting metabolic rate)
is limited and controversial. In agreement with our
study, some have reported REE increased by 5% after
fish oil supplementation [85], while others reported no
significant effect [86–88].
One study showed omega3 in the rat was associated

with increased activity of the sodium-potassium pump
ATPase, increased mitochondrial proton leak, and en-
hanced energy expenditure [89]. Omega3 binds to

PPARγ, potentially altering the expression of proteins in-
volved in fat metabolism. In general, it was suggested
that supplementation with EPA and DHA may increase
REE through enhanced fatty acid oxidation [90]. Some
factors that may have contributed to the variable results
in previous studies include low doses of omega3, shorter
and variable supplementation periods, and small num-
bers of participants. Figure 4 shows the relation of
omega 3 fatty acids, REE, PPARγ and UCP2.
A limitation of our study is the differential effects of

EPA and DHA were not assessed. Another limitation is
that as PPARγ is a nuclear receptor, it requires ligand
for its activation and subsequent nuclear translocation.
Compared to its expression levels, its protein level is
very important, unfortunately this study could not meas-
ure it. The evaluation of expression levels of downstream
target genes other than UCP2 is suggested for future

Table 4 Comparison of the serum concentrations of UCP2 at before and after the intervention

Variable Omega-3 Group (n = 18) Placebo Group (n = 18) MD (95% CI), P

Ucp2 (ng/L)

Before 15.6 (11.5, 27.9) 15.2 (11.8, 28.1) 0.37(− 0.47, 0.42), 0.91b

After 22.1 (13.4, 29.4) 14.9 (10.4, 17.8) 7.17 (4.02, 12.8), 0.04 c

MD (95% CI), pa 6.48 (3.08, 7.73), 0.01 −0.32 (0.12, 0.49), 0.01

UCP2 uncoupling protein2; Mean (standard deviation), and mean difference (95% CI)
a based on Wilcoxon signed-rank test
b based on Mann–Whitney U test
c based on Quantile regression adjusted for baseline values

Fig. 3 Effect of 3 weeks omega3 supplementation on expression ratio. (p < 0.01 for both diagrams). a. Mean fold change of UCP2 expression in
omega3 and placebo groups in comparison of GAPDH. b. Mean difference in fold change of PPARγ expression in omega3 and placebo groups in
comparison of GAPDH. GAPDH: glyceraldehyde-3-phosphate dehydrogenase; UCP2: uncoupling protein2; PPARγ: peroxisome proliferator-activated
receptor gamma
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research. Future studies should assess the effect of
omega3 supplementation on fat distribution in the body,
such as visceral or subcutaneous fat, and assess the effect
of plant omega3s which are converted to DHA and EPA
in the body. It is also recommended to evaluate the ef-
fect of very high doses and different durations of
omega3s on altering the body composition. Also, we rec-
ommend the evaluation of the combination of omega3
with other obesity-related nutrients (especially vitamin D
and E, Q10).

Conclusion
Omega 3 fatty acids may have an important role in af-
fecting energy metabolism. Our findings showed that
omega3 supplementation leads to the up-regulation of
PPARγ and UCP2 expression in healthy athletes. These
data provide additional evidence to support the hypoth-
esis that these genes may act as a potential target for en-
hancing REE and appetite. Further investigations are
suggested to confirm and support the recommendation
of omega3s for weight reduction in patients with
obesity-comorbidities.
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