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Abstract 

Background  Plyometric training is a commonly employed method to enhance explosive strength in athletes. 
However, to date, no study has provided a comprehensive and systematic evaluation of the effects of unilateral (UNI) 
versus bilateral (BI) plyometric training.

Objectives  This meta-analysis investigates the impact of UNI and BI plyometric training on jumping, sprinting, 
and Change of Direction (COD) abilities.

Study eligibility criteria  To be eligible for inclusion in the meta-analysis, the study had to be:(1)healthy individuals; 
(2)UNI and BI plyometric training ; (3)conducted on rigid surfaces; (4)the outcome indicators were jumping ability, 
sprinting, and change of direction ability; (5)randomized controlled trials (RCTs).

Study appraisal and synthesis methods  We used the random-effects model for meta-analyses. Effect sizes 
(standardized mean difference), calculated from measures of horizontally oriented performance, were represented 
by the standardized mean difference and presented alongside 95% confidence intervals (CI).

Data sources  PubMed, Web of Science, Scopus, ProQuest, CNKI and Google Scholar.

Results  A total of 11 papers met the inclusion criteria. The meta-analysis revealed that UNI contrast training 
was more effective than BI contrast training in improving single-leg jump performance (ES = 0.53, 95% CI: 0.02–1.04; 
Z = 2.05, p = 0.04), double-legs jump performance (ES = -0.07, 95% CI: -0.23–0.09; Z = 0.88, p = 0.38),sprint perfor-
mance (ES = -0.04, 95% CI: -0.07–-0.01; Z = 2.32, p = 0.02), as well as COD (ES = − 0.08, 95% CI: − 0.12 to − 0.03; Z = 3.29, 
p = 0.001 < 0.01). Conversely, BI contrast training showed a greater effect on bilateral jump performance (ES = -0.07, 
95% CI: -0.12–-0.03; Z = 3.39, p = 0.0007). Training with low-ground-contact frequencies (LGCF, fewer than 900 con-
tacts) was found to significantly enhance vertical jump performance (ES = 0.64, 95% CI: 0.01–1.27; Z = 2.00, p = 0.05).

†Wenhao Qu and Wuwen Peng on behalf of the co-first authors.

*Correspondence:
Lingju Guan
guan1977@163.com
Min Lu
Im3899@sina.com
Duanying Li
liduany@gzsport.edu.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13102-025-01113-6&domain=pdf


Page 2 of 17Zhang et al. BMC Sports Science, Medicine and Rehabilitation           (2025) 17:97 

Conclusions  UNI and BI plyometric training offer modality-specific benefits for enhancing single-leg jumping, sprint-
ing, and COD performance, whereas BI is more effective for optimizing bilateral jump performance. The LGCF protocol 
significantly enhances vertical jump performance.

Keywords  Unilateral training, Plyometric training, Lower Limb Athletic Performance

Introduction
Plyometric Training (PT) is a widely utilized method 
for enhancing athletic power output, optimizing neuro-
muscular control through the Stretch-Shortening Cycle 
(SSC) to improve force production [1–4]. In recent 
years, the differential effects of Unilateral (UNI) and 
Bilateral (BI) plyometric training have garnered sig-
nificant attention. While bilateral training is commonly 
employed for maximizing external loading in lower-
limb strength development [5, 6], unilateral training is 
considered more sport-specific due to its closer resem-
blance to movement patterns in sports such as basket-
ball cuts and soccer kicks [7–9]. Compared to bilateral 
training, unilateral training involves a narrower base of 
support, imposing higher demands on multi-joint neu-
romuscular coordination and stability [10, 11].

Empirical studies have demonstrated that unilateral 
training confers significant advantages in improving 
single-leg jumping and Change of Direction (COD) 
abilities. For instance, Bogdanis et al. (2019) found that 
unilateral plyometric training outperformed bilateral 
training in enhancing single-leg jump performance 
and Rate of Force Development (RFD) [12]. Similarly, 
Vasileios (2020) reported more pronounced improve-
ments in lower-limb strength and power following 
unilateral training in adolescent soccer players [13]. 
However, bilateral training remains superior in tasks 
requiring coordinated bilateral lower-limb force pro-
duction, such as squat jumps [14].

Despite existing research comparing unilateral and 
bilateral training [15], no systematic meta-analysis has 
yet comprehensively evaluated their effects on jump-
ing, sprinting, and COD abilities [16]. Current studies 
are often limited by small sample sizes and inconsist-
ent findings. For example, some studies have found no 
significant effects of unilateral training on horizontal 
jumping [13], while others support its efficacy [17]. 
This inconsistency may be attributed to factors such as 
training volume, intervention duration, and participant 
characteristics [18, 19].

Therefore, the present study aims to systematically 
assess the effects of unilateral versus bilateral plyomet-
ric training on jumping, sprinting, and COD abilities 
through meta-analytic methods, providing scientific 
evidence for coaches to design training programs. The 
specific objectives include:

1.	 Comparing the effects of unilateral and bilateral 
training on single-leg and double-leg jumping, as well 
as vertical and horizontal jump performance;

2.	 Investigating the moderating role of training volume 
(e.g., Total ground contact frequency) on training 
outcomes;

3.	 Analyzing their impacts on sprint performance and 
COD ability.

Materials and methods
This meta-analysis strictly adheres to the PRISMA guide-
lines [20], and the protocol has been registered with 
PROSPERO (ID: CRD42024586349).

Search strategy
The databases were searched by 2 researchers each using 
an independent double-blind approach, and 6 data-
bases were used for the literature search with a search 
time frame from January 1, 2010 to December 31, 2024 
(Table 1).

Eligibility criteria
Inclusion criteria for this meta-analysis were based on 
the PICOS (Participants, Intervention, Comparison, Out-
come, Study design) format of evidence-based medicine.

Studies were included if they met the following criteria: 
(1) participants were healthy individuals; (2) the experi-
mental group underwent unilateral plyometric training 
as the intervention, followed by specialized training (e.g., 
soccer, basketball, volleyball) or regular physical educa-
tion classes, similar to the control group; (3) the control 
group received bilateral plyometric training only, with 
similar activities, including specialized training or regular 
physical education courses; (4) all studies were conducted 
on rigid surfaces to eliminate the potential interference 
from different training surfaces; (5) outcome measures 
included jump, sprint, change of direction, etc.; (6) stud-
ies were randomized controlled trials (RCTs).

Studies were excluded if they met any of the follow-
ing criteria: (1) non-randomized controlled trials, self-
controlled trials, or crossover trials; (2) insufficient data 
availability; (3) conference papers, reviews, or meta-
analyses; (4) inability to obtain full-text articles; (5) stud-
ies conducted on non-healthy populations. A total of 11 
studies met the inclusion criteria and were included in 
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the analysis. The detailed inclusion and exclusion process 
is illustrated in Fig. 1.

Literature screening and data extraction
The literature screening was conducted using End-
note X9(Thomson ResearchSoft, Stanford, CT, USA), 
while data extraction was performed with Excel. Two 

researchers independently carried out the screening and 
data extraction, with cross-checking of results. In cases 
of discrepancies between the two researchers, a third 
researcher was responsible for final data extraction and 
reconciliation.

During the screening process, irrelevant studies were 
excluded, and the remaining potentially relevant studies 

Table 1  Literature search criteria settings

Search items Content

Data source PubMed, Web of Science, Scopus, ProQuest,CNKI,Google Scholar

Retrieval "plyometric"("plyometrics" OR "PT" OR "pliometrique" OR "entrainement pliometrique" OR "salto pliometrico" OR "velocidad")

"unilateral"("single-leg" OR "single leg")

"bilateral" ("double-leg" OR "double leg")

"sports performance"( "lower limb strength" OR "Lower limb explosive strength" OR "explosive" OR "Power")

"jump performance"("hop" OR "countermovement jump" OR "CMJ" OR "countermovement vertical jump" OR "CVJ" 
OR "squat jump" OR "SJ" OR "standing long jump" OR "SLJ" OR "drop jump" OR "deep jump" OR "DJ")

"sprint performance"("10 m" OR "20 m" OR "30 m" OR "40 m" OR "50 m")

"agility performance"("change of direction" OR "COD" OR "505"OR "cut" OR "T agility test" OR "T test")

Language of Literature Unlimited

Type of literature Jourmal,Thesis

Search date January 1, 2010 to December 31, 2024

Fig. 1  Flowchart for inclusion and exclusion of studies
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underwent a comprehensive full-text review to deter-
mine their eligibility for inclusion in the final analysis. 
The extraction included: (1) authors’ names and publica-
tion years; (2) characteristics of subjects (age or matura-
tion stage, sex, number of research subjects); (3) pre- and 
posttest data of included indicators; (4) training pro-
grams (intervention period, training frequency, train-
ing time, training methods of experimental group and 
control,grouptotal ground contact frequency(TGCF)).

Assessment of risk of bias
The Physiotherapy Evidence Database (PEDro) was 
used to assess the risk of bias and methodological qual-
ity of studies included in the meta-analysis, and the scale 
assessed the validity of studies on a scale from 0 (high risk 
of bias) to 10 (low risk of bias). The scale was evaluated 
by three persons independently for the included studies, 
and if the evaluations differed, they met to discuss. The 
first item was not counted in the total score, and a total 
score ≥ 6 represented a low risk of bias threshold and 
high quality of the literature.

Statistical analysis
This study utilized RevMan 5.4 software (The Nordic 
Cochrane Centre, Denmark) for effect size pooling, sub-
group analyses, and heterogeneity testing. To ensure 
objectivity, only analyses including data from at least 
two groups were included. All measurement units were 
converted to the International System of Units (SI) and 
standardized using unified formulas.

For continuous outcome measures, either the Mean 
Difference (MD) or Standardized Mean Difference (SMD; 
Hedges’ g) was selected as the effect size. The MD was 
calculated when all studies employed identical measure-
ment units, while the SMD was applied when measure-
ment tools or units were inconsistent [21, 22]. Effect 
sizes were derived from baseline-to-endpoint changes 
in means, standard deviations, and sample sizes for both 
experimental and control groups. The formula for MD is:

where XE and XC represent the means of the experi-
mental and control groups, respectively. According 
to Cohen’s criteria, effect sizes of 0.2, 0.5, and 0.8 were 
interpreted as small, moderate, and large effects, respec-
tively [23].

Heterogeneity across studies was evaluated using the 
I2 statistic, with the following thresholds:I2 < 25%: Low 
heterogeneity;25% ≤ I2 < 50%: Mild heterogeneity;50% ≤ I2 
< 75%: Moderate heterogeneity;I2 ≥ 75%: High heteroge-
neity [24].

MD = XE − XC

A fixed-effect model (FE) was applied when I2 < 25%, 
whereas a random-effects model (RE) was used for I2 
≥ 25% [25]. Statistical significance was set at p < 0.05.

Total Ground Contact Frequency (TGCF) was defined 
as the total number of foot–ground contacts per plyo-
metric cycle, reflecting training volume [26, 27]. Adapted 
from Chen et  al. (2023) [28], TGCF was stratified into 
three groups:

Low Ground Contact Frequency (LGCF): <900 total 
cycles
Medium Ground Contact Frequency (MGCF): 900–
1400 total cycles
High Ground Contact Frequency (HGCF): >1400 
total cycles.

To ensure comparability, subgroup analyses were 
restricted to categories containing at least two studies; 
subgroups with fewer than two studies were systemati-
cally excluded.

Risk of bias across all studies
Publication bias was quantified by Stata SE12.0 software 
Egger’s test, p < 0.05 significant publication bias.

Results
Study selection
A preliminary search identified 1256 articles, which were 
screened for duplicates. After removing duplicates, the 
following databases were searched: PubMed (n = 39),Web 
of Science (n = 483), Scopus (n = 388), ProQuest 
(n = 177),CNKI (n = 163),and Google Scholar (n = 6). A 
total of 10 studies met the inclusion criteria and were 
included in the meta-analysis (Fig. 1).

Study characteristics
Following the PRISMA guidelines, this meta-analysis 
incorporated 11 independent studies derived from 67 
experimental protocols (Table 2). A total of 328 healthy 
participants ( 31.7% male, 49.4% female,18.9% not 
reported) were included. The age range varied between 
studies, 1 studies evaluated youth (9 ≤ 12 years)Preado-
lescent;7 studies evaluated youth (13 ≤ 18 years), and 3 
studies evaluated adults (18–65 years).The experimental 
group received unilateral enhanced training, whereas the 
control group underwent bilateral training. Each session 
lasted 20–90 min, delivered 2–3 times per week over 
6–12 weeks. This frequency aligns with evidence-based 
guidelines for optimizing training adaptations while 
minimizing attrition risks.The sample comprises stu-
dents and athletes who practice different sports such as 
volleyball, basketball, badmintonl, Powerlifte, Endurance 
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Running, soccer,,and the competitive level ranges from 
recreational to professional.

UNI unilateral plyometric training,BI bilateral plyo-
metric training,M male,F FemaleCMJ countermove-
ment jump, SJ squat jump,CVJ Countermovement 
Vertical Jump,HJ Horizontal Jump,SLJ Standing Long 
Jump,CODD Change of Direction Drill,5-RBJ 5-Repeti-
tion Ball Jump.

Risk of bias in the included articles
There were 7 literature quality scores ≥ 6 as assessed by 
the PEDro scale (Table 3).

Meta‑analysis results
Unilateral and bilateral jump performance
A total of 40 studies from 9 articles were included to 
investigate the effects of unilateral (UNI) and bilateral 
(BI) training on jumping performance (Fig. 2). The meta-
analysis revealed no statistically significant difference in 
jumping performance between UNI and control inter-
ventions (ES = 0.1, 95% CI: 0.04–0.25; Z = 1.41, p = 0.16), 
with substantial heterogeneity observed across studies 
(I2 = 35%, p = 0.02). The standardized mean difference 
(SMD) was employed to synthesize outcomes across 
studies.

Subgroup analyses of jumping performance dem-
onstrated differential effects of unilateral versus bilat-
eral plyometric training on single-leg and double-leg 
tasks:Single-leg jumps showed significant improvement 
(ES = 0.29, 95% CI: 0.06–0.52; Z = 2.46, p = 0.01) with 
moderate heterogeneity (I2 = 49%, p = 0.004);Double-leg 
jumps exhibited no significant difference (ES = −0.07, 
95% CI: −0.23–0.09; Z = 0.88, p = 0.38) with negligible 
heterogeneity (I2 = 0%, p = 0.96) (Fig. 2).

Vertical jump performance
A total of 28 studies from 9 articles were included to 
examine the effects of unilateral (UNI) and bilateral (BI) 
training on vertical jump performance (Fig. 3). The meta-
analysis revealed a statistically significant improvement 
in vertical jump performance with UNI compared to con-
trol interventions (ES = 0.53, 95% CI: 0.02–1.04; Z = 2.05, 
p = 0.04), with moderate heterogeneity across studies 
(I2 = 49%, p = 0.002). Jump performance was measured in 
centimeters (cm).

Subgroup analyses stratified by total ground contact 
frequency (TGCF) demonstrated differential effects of 
unilateral versus bilateral plyometric training on verti-
cal jump performance:LGCF group (TGCF ≤ 900): Sig-
nificant enhancement (ES = 0.64, 95% CI: 0.01–1.27; 
Z = 2.00, p = 0.05) with low heterogeneity (I2   = 8%, 
p = 0.37);MGCF group (900 < TGCF ≤ 1400): Non-sig-
nificant effect (ES = 0.70, 95% CI: −0.33–1.73; Z = 1.33, 

p = 0.18) accompanied by high heterogeneity (I2 = 82%, 
p < 0.0001);HGCF group (TGCF > 1400): No signifi-
cant difference (ES = 0.5, 95% CI: −0.87–0.96; Z = 0.10, 
p = 0.92) with negligible heterogeneity (I2 = 0%, p = 0.96).
(Fig. 3).

Horizontal jump performance
A total of 12 studies from 6 articles were included to 
examine the effects of unilateral (UNI) and bilateral (BI) 
training on horizontal jump performance (Fig.  4). The 
meta-analysis demonstrated no statistically significant 
difference in horizontal jump performance between UNI 
and control interventions (ES = 0.02, 95% CI: −0.20–0.25; 
Z = 0.19, p = 0.85), with negligible heterogeneity across 
studies (I2 = 0%, p = 0.63). The standardized mean differ-
ence (SMD) was employed to synthesize outcomes across 
studies.

Sprint performance
A total of 11 studies from 5 articles were included to 
examine the effects of unilateral (UNI) and bilateral (BI) 
training on sprint performance (Fig.  5). The meta-anal-
ysis demonstrated a statistically significant difference in 
sprint performance favoring UNI compared to control 
interventions (ES = −0.04, 95% CI: −0.07–−0.01; Z = 2.32, 
p = 0.02), with negligible heterogeneity across studies (I2 
= 0%, p = 0.68). Sprint performance was measured in sec-
onds (s).

Change of direction (COD) performance
A total of 16 studies from 6 articles were included to 
examine the effects of unilateral (UNI) and bilateral (BI) 
training on agility performance (Fig.  6). The meta-anal-
ysis demonstrated a statistically significant difference in 
agility performance favoring UNI compared to control 
interventions (ES = −0.07, 95% CI: −0.12–−0.03; Z = 3.39, 
p = 0.0007), with negligible heterogeneity across studies 
(I2 = 0%, p = 0.54). Agility performance was measured in 
seconds (s).

Sensitivity analysis
Through sequentially removing individual indicators 
and recalculating the heterogeneity (I2) and pooled 
effect sizes, it was found that CMJ-L (single-leg coun-
termovement jump-left) and CMJ-R (single-leg coun-
termovement jump-right) contributed significantly to 
heterogeneity:

When all indicators were included, the heterogeneity 
was high (I2 = 82%, p < 0.01).

After excluding CMJ-L and CMJ-R, the heterogeneity 
dropped to 0% (p = 0.52), indicating these two indicators 
were the primary sources of heterogeneity.
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Notably, after excluding CMJ-L/R, the direction of the 
pooled effect sizes for the remaining indicators (BCMJ, 
UCMJ) contradicted the original analysis.

Risk of bias across studies
Bias analysis was performed using the Egger test of Stata 
SE12.0 to more accurately evaluate the possible pub-
lication bias in the study in a combined qualitative and 
quantitative manner. The results showed no significant 
publication bias for jumping ability (p = 0.885), sprinting 
ability (p = 0.7), and change of direction ability (p = 0.12) 
(Table 4).

Discussion
This study systematically explored the differential 
effects and underlying mechanisms of unilateral (UNI) 
and bilateral (BI) plyometric training on athletic per-
formance through meta-analysis. The results indicated 
that UNI training significantly enhanced single-leg 
jumping, sprint acceleration, and change of direction 
(COD) ability, while BI training was more effective in 
optimizing bilateral jump performance. Improvements 
in vertical jumping exhibited a clear dose–response 
relationship, with the LGCF showing significant effects. 
In contrast, HGCF led to diminished benefits due to 
accumulated fatigue. No statistical differences were 
observed between UNI and BI training in horizontal 
jump performance, with the underlying biomechan-
ics involving complex regulation of core stability and 
multi-joint coordination. The concurrent enhancement 
of sprint and COD abilities originated from cross-task 
adaptations of UNI training, including kinetic chain 
synchronization, stiffness modulation, and multiplanar 
control.

Unilateral and bilateral jump performance
This meta-analysis demonstrates that unilateral plyo-
metric training (UNI) significantly enhances single-
leg jump performance, whereas bilateral training (BI) 
is more effective for double-leg jumps. These findings 
align with the specificity principle, as unilateral training 
mimics single-leg athletic demands (e.g., sprinting, cut-
ting), improving intermuscular coordination and motor 
unit recruitment for unilateral tasks [36]. Notably, the 
cross-transfer effect observed in UNI training [37] 
suggests its potential utility in injury rehabilitation or 
asymmetrical strength development, offering practical 
value for athletes recovering from unilateral injuries.

While unilateral plyometric training (UNI) demon-
strates superior efficacy for single-leg tasks and cross-
transfer potential for injury rehabilitation, these findings 
are constrained by the homogeneity of included studies, 
predominantly involving young, healthy athletes. Lim-
ited data on populations with preexisting asymmetries or 
chronic injuries may restrict generalizability to rehabilita-
tion contexts. UNI protocols should prioritize single-leg 
explosive tasks (e.g., sprint acceleration, cutting maneu-
vers), while BI protocols are more suitable for double-leg 
power development (e.g., basketball rebounding, verti-
cal jumps). Additionally, the cross-transfer effect further 
supports the application of UNI training for injury reha-
bilitation or addressing strength asymmetries.

Horizontal jump performance
Demonstrated significant improvements in hori-
zontal jump outcomes. This discrepancy stems from 
fundamental biomechanical differences between hori-
zontal jumps (e.g., standing long jump, triple jump) 
and vertical jumps. Horizontal jumps require whole-
body coordination involving multi-phase integration 

Table 3  The Physiotherapy Evidence Database (PEDro) scale ratings

Studies PEDRo Scale Items PEDro Score

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11

Gonzalo-Skok (2018) [8] 1 1 0 1 0 0 0 1 0 1 1 6

Drouzas (2020) [13] 1 1 0 1 0 0 0 0 0 1 1 5

Ahmad (2020) [29] 1 1 0 1 0 0 0 0 0 1 1 5

Abston (2020) [30] 1 1 1 1 0 0 0 1 0 1 1 7

Kong (2018) [31] 1 1 0 1 0 0 0 1 0 1 1 6

Greenwood (2021) [32] 1 1 0 1 0 0 0 1 0 1 1 6

Xu (2023) [17] 1 1 0 1 0 0 0 1 0 1 1 6

Makaruk (2011) [11] 1 1 0 1 0 0 0 0 0 1 1 5

Li (2021) [33] 1 1 0 1 0 0 0 1 0 1 1 6

Miao (2021) [34] 1 1 0 1 0 0 0 1 0 1 1 6

Mujezinović (2024) [35] 1 1 0 0 0 0 0 1 0 1 1 5
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of takeoff, flight, and landing. Athletes must gener-
ate force at a lower takeoff angle (typically < 45°) [38, 
39] while engaging core musculature (transversus 
abdominis, erector spinae) to stabilize the trunk and 
facilitate momentum transfer from the lower to upper 

extremities, thereby maximizing horizontal propulsion 
[40, 41]. A meta-analysis revealed that core training 
significantly enhances horizontal jump performance 
(ES = 0.84; p = 0.01) [42], with 90% of performance vari-
ance attributed to flight distance, which is determined 

Fig. 2  Forest plots of UNI and BI training on single-leg and double-legs jump performance
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by the center-of-mass velocity at takeoff [43]. Further-
more, Takahashi et  al. demonstrated that long jump 
athletes exhibit significantly greater trunk muscle mass 
compared to untrained individuals [44], further under-
scoring the critical role of core conditioning.From a 
biomechanical perspective, the limited efficacy of UNI/
BI training may be attributed to the following factors:

Deficient core force transmission: In horizontal 
jumps, inadequate core stability disrupts force transfer, 

redirecting hip extension forces into spinal flexion over 
horizontal propulsion [45].

Impaired inter-joint sequencing: UNI/BI train-
ing neglects the hip-dominant coordination pattern 
(hip:45% > knee:30% vertical force) critical for horizontal 
jump takeoffs [46].

Force-angle mismatch: BI-induced vertical force domi-
nance elevates takeoff angles (> 50° vs. optimal < 45°), 
reducing jump distance by 8–12% per 5° excess [47].

Fig. 3  Forest plots of UNI and BI training affecting vertical jump performance
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The integration of core stabilization and multi-joint 
coordination drills addresses biomechanical deficiencies 
in UNI/BI training for horizontal jumps; however,the 
heterogeneity in core training protocols across studies 
complicates the identification of optimal programming 
variables, highlighting the need for standardized method 
Integrating core stabilization exercises (e.g., single-leg 
medicine ball throws) and multi-joint coordination drills 
(e.g., approach-run into bounding) into traditional UNI/
BI regimens may enhance horizontal jump performance 
by addressing these biomechanical constraints.

Vertical jump performance
Unilateral plyometric training (UNI) significantly 
enhanced vertical jump performance. Following adjust-
ments to the total ground contact frequency (TGCF) 
classification thresholds based on prior literature [28, 
48], subgroup analyses revealed distinct dose–response 
patterns. Overall, UNI training demonstrated a statisti-
cally significant improvement in vertical jump perfor-
mance compared to control interventions. The effects 
of different training volumes on vertical jump perfor-
mance varied across the LGCF, MGCF, and HGCF 
groups. In the LGCF group, UNI training resulted in a 

Fig. 4  Forest plots of UNI and BI training affecting Horizontal jump performance

Fig. 5  Forest plots of UNI and BI training affecting sprint performance
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significant enhancement in vertical jump performance, 
consistent with the findings of Aztarain-Cardiel [48], 
who reported optimal countermovement jump (CMJ) 
gains in adolescent athletes under low-volume proto-
cols (TGCF ≤ 900). The reduced heterogeneity across 
studies suggests that these consistent benefits may 
be attributed to minimized fatigue accumulation and 
adequate neuromuscular adaptation [49, 50]. In con-
trast, the MGCF group exhibited a numerically higher 
effect size, but the results were non-significant. This 
variability may stem from divergent training protocols, 
such as session duration and exercise selection, or par-
ticipant characteristics, including training status and 
sport specificity. For example, Ramirez-Campillo et  al. 
[51] noted performance decrements in CMJ height with 
excessive weekly jumps (≥ 240), highlighting the non-
linear relationship between training volume and adap-
tation. In the HGCF group, elevated training volumes 

led to fatigue-induced declines in explosive power. This 
is likely due to training volumes exceeding recovery 
capacity, resulting in neural fatigue [52, 53] and lac-
tate accumulation [54–57], which impair force produc-
tion and stretch–shortening cycle (SSC) efficiency. This 
finding aligns with Lunxin’s meta-analysis [28], which 
cautioned against TGCF > 1400 due to diminishing 
returns and increased injury risks.

The high heterogeneity of CMJ-L/R likely stems from 
unilateral strength asymmetry in badminton players, 
as non-dominant limbs showed greater improvement 
(12.4% vs. 8.53%). Despite their exclusion, the robustness 
of the overall effect suggests that bilateral outcomes (e.g., 
BCMJ) are more reliable for evaluating lower limb explo-
sive power in this population."

The dose–response superiority of low-volume UNI 
protocols (TGCF ≤ 900) must be interpreted cautiously 
due to potential confounding factors, such as variations 

Fig. 6  Forest plots of UNI and BI training affecting change of direction performance

Table 4  Egger’s test results

Std_Eff Coef. Std.Err t P＞|t| [95% Conf.Interval]

slope 0.3000647 0.1631249 1.84 0.074 -0.0301644 0.6302938

bias 0.0474071 0.3252767 0.15 0.885 -0.6110811 0.7058953

slope -0.0336603 0.4901653 -0.07 0.947 -1.142491 1.075171

bias -0.5054792 1.270616 -0.4 0.7 -3.379813 2.368854

slope 0.5936817 0.4954432 1.2 0.251 -0.4689384 1.656302

bias -2.158254 1.303516 -1.66 0.12 -4.954019 0.6375103
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in rest intervals and athletes’ training backgrounds. The 
TGCF classification thresholds, while literature-derived, 
lack sport-specific validation—team-sport athletes may 
tolerate higher volumes due to inherent plyometric 
demands.For practitioners, these results advocate pri-
oritizing LGCF protocols (TGCF ≤ 900) when design-
ing UNI programs, particularly for athletes with limited 
plyometric experience. Coaches should monitor training 
load to avoid crossing thresholds that induce fatigue (e.g., 
TGCF > 1400), especially in sports requiring repeated 
explosive efforts.

Sprint and Change of Direction (COD) performance
The present study demonstrates that unilateral plyomet-
ric training (UNI) concurrently enhances sprint accelera-
tion and change of direction (COD) performance. This 
synergistic effect may originate from shared biomechani-
cal demands for unilateral horizontal power production 
between these two motor tasks. Meylan et  al. [58] pro-
vided foundational evidence through correlational anal-
ysis: horizontal continuous jump (HCJ) performance 
showed moderate negative associations with 5-m sprint 
time (r = −0.47) and COD duration (r = −0.52) in physi-
cal education students, suggesting common neuromus-
cular underpinnings for unilateral propulsion capacity. 
The dual performance benefits of UNI appear mediated 
through three cross-task adaptation mechanisms:

Core biomechanical mechanisms

(1)	 Kinetic Chain Synchronization: Single-leg drop 
jumps (40-60 cm height) reduced inter-joint phase 
differences by 8.2 ms (p = 0.02) in hip-knee-ankle 
flexion sequences, approximating the coordination 
patterns observed during sprint acceleration (15-
25% gait cycle) and COD deceleration phases [4, 
30].

(2)	 Stiffness Modulation: A 17.3% improvement in 
ankle joint energy storage-release efficiency sig-
nificantly decreased ground contact time (-11.4% 
in acceleration, -9.3% in COD braking), directly 
enhancing movement frequency [59–61].

(3)	 Multiplanar Control: Enhanced hip abductor acti-
vation (23% increase in sEMG amplitude) reduced 
trunk lateral tilt during COD by 3.8°, while con-
comitant hamstring strength gains (ES = 0.68) opti-
mized horizontal ground reaction force (GRF) pro-
duction in acceleration [62, 63].

Task‑specific adaptations
The biomechanical enhancements in sprint accelera-
tion were driven by two interdependent mechanisms:(1) 
Horizontal Propulsion achieved a 12.7% increase in GRF 
components parallel to the running direction, directly 
contributing to a 0.12 s reduction in 5-m sprint time (p < 
0.05) [64]; (2) Joint Moment Optimization demonstrated 
knee flexion moments of 2.1 N·m/kg – approaching the 
sport-specific benchmark of 2.3 N·m/kg observed in elite 
sprinters [65]– which improved force transmission effi-
ciency during ground contact [66].

These adaptations collectively narrowed the kinetic 
chain "leakage" (e.g., reduced vertical force dissipation 
by 8.4% [67]), effectively translating training-induced 
strength gains into functional acceleration gains equiva-
lent to a 0.8 m lead advantage over 20 m in competitive 
scenarios [68].

The biomechanical adaptations during COD mani-
fested through three sequential phases:

(1) Braking phase exhibited an 18.4% increase in 
knee joint eccentric power (6.2 W/kg) [63], enhancing 
energy absorption capacity to facilitate rapid decelera-
tion through optimized quadriceps-hamstrings co-acti-
vation [69];(2) Transition phase demonstrated a 15.7% 
reduction in center-of-pressure displacement, indicating 
improved postural stability via enhanced proprioceptive 
feedback (ankle inversion-eversion error reduced by 21%) 
for faster directional switching [70];(3) Reacceleration 
phase achieved 19.3% faster GRF generation rates [71], 
optimizing propulsion efficiency through increased glu-
teus medius activation (sEMG↑34%) [72].

These phase-specific improvements interacted syner-
gistically, collectively reducing total COD time by 0.15 s 
(p < 0.01) – equivalent to the performance gap between 
collegiate and elite athletes in cutting tasks [71].

Although UNI training synergistically enhances sprint 
acceleration and COD performance, biomechanical 
outcomes (e.g., GRF, joint stiffness) were measured in 
controlled environments, potentially underestimat-
ing performance variability under competitive fatigue. 
Additionally, the lack of sport-specific COD tests (e.g., 
soccer-specific cutting vs. the generic 505 test) limits 
task transferability.Coaches should implement phased 
unilateral plyometric training, emphasizing kinetic chain 
synchronization (single-leg drop jumps from 40–60 cm) 
and ankle stiffness (ground contact time < 180 ms) dur-
ing foundational phases. Specialized acceleration train-
ing should integrate loaded sprints (10% body weight) to 
boost horizontal propulsion, while COD training must 
target braking (eccentric jumps), transition (perturba-
tion drills), and reacceleration (reactive lateral jumps). 
Concurrently, integrate hamstring eccentric strengthen-
ing (e.g., Nordic curls) and biomechanical monitoring, 
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progressively increasing training volume (40% → 60%) 
to synergistically enhance sprint acceleration and COD 
performance.

conclusion
The present study reveals that the effects of Unilateral 
(UNI) and Bilateral (BI) plyometric training on athletic 
performance are modality-specific. UNI significantly 
enhances single-leg jump performance, sprint speed, 
and Change of Direction (COD) ability, while BI is more 
advantageous for optimizing bilateral jump performance. 
In terms of training dosage regulation, the Low Ground 
Contact Frequency (LGCF) protocol (with fewer than 
900 contacts per cycle) demonstrates a significant advan-
tage in improving vertical jump performance. Addition-
ally, no statistical differences were observed between 
UNI and BI in horizontal jump performance.

Based on these findings, it is recommended that train-
ing modalities be selected according to the specific 
demands of the sport. Furthermore, optimizing training 
volume can enhance neuromuscular adaptation benefits.
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